Machine Learning Datasets Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 

Machine Learning Datasets

  • folder icon closed folder iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • folder icon closed folder iconShuffling in ds.pytorch()
  • folder icon closed folder iconStorage Synchronization
  • folder icon closed folder iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • folder icon closed folder iconTensor Relationships
  • folder icon closed folder iconDeep Lake Docs Home
  • folder icon closed folder iconQuickstart

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconQuickstart

WIDER Face Dataset

Estimated reading: 4 minutes

Visualization of Wider face dataset in Deep Lake UI

WIDER Face dataset

What is WIDER Face Dataset?

The WIDER FACE dataset is a face detection benchmark dataset. The images in this dataset were selected from the publicly available WIDER dataset. The WIDER FACE dataset was organized based on 61 event classes. For each event class, data such as training, validation, and testing were randomly selected from the WIDER dataset. Similar to MALF and Caltech datasets, the WIDER FACE does not release the bounding box ground truth for the test images.

Download WIDER FACE Dataset in Python

Instead of downloading the WIDER FACE dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load WIDER Face Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/wider-face-train")
				
			

Load WIDER Face Dataset Validation Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/wider-face-val")
				
			

Load WIDER Face Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/wider-face-test")
				
			

WIDER Face Dataset Structure

WIDER Face Data Fields
  • image: tensor containing the face image.
  • boxes: tensor representing bounding boxes.
  • poses: tensor to distinguish types of poses.
  • expressions: tensor to distinguish between ‘exaggerate_expression’ and ‘typical expression’.
  • illuminations: tensor to distinguish between ‘normal illumination’ and ‘extreme illumination’.
  • occlusions: tensor to distinguish ‘no occlusion’, ‘partial occlusion’, and ‘heavy occlusion’
  • validities: tensor checks if the image is valid or invalid.
  • blurs: tensor to distinguish ‘clear’, ‘normal blur’, and ‘heavy blur’ images.
WIDER Face Splits
  • The WIDER Face dataset training set is composed of 12880.
  • The WIDER Face dataset test set was composed of 3226.
  • The WIDER Face dataset val set was composed of 16097.

How to use WIDER Face Dataset with PyTorch and TensorFlow in Python

Train a model on WIDER Face dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on WIDER Face dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about WIDER Face Dataset

WIDER Face Dataset Description

  • Homepage: http://shuoyang1213.me/WIDERFACE/
  • Paper: Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou in WIDER FACE: A Face Detection Benchmark
  • Point of Contact: shuoyang.1213@gmail.com
WIDER Face Dataset Curators

Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou

WIDER Face Licensing Information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.

If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

WIDER Face Citation Information
				
					@inproceedings{yang2016wider,
    Author = {Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou},
    Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    Title = {WIDER FACE: A Face Detection Benchmark},
    Year = {2016} }
				
			

WIDER Face Dataset FAQs

What is the WIDER Facedataset for Python?

The WIDER FACE dataset is commonly used as a Face Detection Benchmark. it contains 32,203 images and labels 393,703 faces with a high degree of variability in scale, poses, and occlusion. The database is split into training (40%), validation (10%), and testing (50%) sets. The images in the dataset are divided into three levels (easy, medium, and hard) according to the difficulties of image detection.

How to download the WIDER Face dataset in Python?

You can load WIDER Face dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load WIDER Face dataset training subset and testing subset in Python.

How can I use WIDER Face dataset in PyTorch or TensorFlow?

You can stream the WIDER Face dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on WIDER Face dataset with PyTorch in Python or train a model on WIDER Face dataset with TensorFlow in Python.

Datasets - Previous KTH Actions Dataset Next - Datasets WISDOM Dataset
Datasets - Previous KTH Actions Dataset Next - Datasets WISDOM Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop