Machine Learning Datasets Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 

Machine Learning Datasets

  • folder icon closed folder iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • folder icon closed folder iconShuffling in ds.pytorch()
  • folder icon closed folder iconStorage Synchronization
  • folder icon closed folder iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • folder icon closed folder iconTensor Relationships
  • folder icon closed folder iconDeep Lake Docs Home
  • folder icon closed folder iconQuickstart

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconQuickstart

TIMIT Dataset

Estimated reading: 4 minutes

Visualization of Timit dataset in Deep Lake UI

TMIT dataset

What is TMIT Dataset?

The TIMIT Acoustic-Phonetic Continuous Speech Corpus dataset is a standard dataset used for the evaluation of automatic speech recognition systems. It contains recordings of 630 speakers. Also, the recordings include eight dialects of American English. Each speaker in the dataset reads 10 phonetically-rich sentences. The TIMIT corpus includes time-aligned orthographic, phonetic, and word transcriptions. It also includes a 16-bit, 16kHz speech waveform file for each phrase said. The TIMIT corpus transcriptions have been hand-verified.

Download TMIT Dataset in Python

Instead of downloading the TMITdataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load TMIT Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/timit-train")
				
			

Load TMIT Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("deeplake://activeloop/mnist-test")
				
			

TMIT Dataset Structure

TMIT Data Fields
  • audios: tensor represent audio in wav format.
  • texts: tensor representing the text spoken in audio.
  • dialects: tensor representing the dialect of the speaker.
  • is_sentences: tensor to identify if the audio is a sentence.
  • is_word_files: tensor to identify if the audio is word.
  • is_phoenetics: tensor to identify if the audio is phonetic.
  • speaker_ids: tensor representing the speaker id.
Timit Data Splits
  • The TIMIT dataset training set is composed of 4620 audio files.
  • The TIMIT dataset test set is composed of 1690 audio files.

How to use TMIT Dataset with PyTorch and TensorFlow in Python

Train a model on TMIT dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on TMIT dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about TMIT Dataset

TMIT Dataset Description

  1. Homepage:https://catalog.ldc.upenn.edu/LDC93s1
  2. Paper: Garofolo, John S., et al. TIMIT Acoustic-Phonetic Continuous Speech Corpus LDC93S1. Web Download. Philadelphia: Linguistic Data Consortium, 1993.
Timit Dataset Curators

John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett, Nancy L. Dahlgren, Victor Zue

TIMIT Dataset Licensing Information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.

If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

Timit Dataset Citation Information
				
					@inproceedings,
  title = {TIMIT Acoustic-Phonetic Continuous Speech Corpus},
  author = {John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett, Nancy L. Dahlgren, Victor Zue},
  booktitle = {Linguistic Data Consortium, },
  year = {1993} 
}
				
			

TIMIT Dataset FAQs

What is the TIMIT dataset for Python?

The TIMIT dataset is a speech dataset that is often used for the evaluation of automatic speech recognition systems. It was developed by Texas Instruments and MIT with DARPA’s (Defense Advanced Research Projects Agency) financial support. It is often used in the domain of speech recognition.

How to download the TIMIT dataset in Python?

You can load TIMIT dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load TIMIT dataset training subset in Python.

How can I use TIMIT dataset in PyTorch or TensorFlow?

You can stream the TIMIT dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on TIMIT dataset with PyTorch in Python or train a model on TIMIT with Tensorflow in Python.

Datasets - Previous PACS Dataset Next - Datasets KTH Actions Dataset
Datasets - Previous PACS Dataset Next - Datasets KTH Actions Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop