Machine Learning Datasets Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 

Machine Learning Datasets

  • folder icon closed folder iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • folder icon closed folder iconShuffling in ds.pytorch()
  • folder icon closed folder iconStorage Synchronization
  • folder icon closed folder iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • folder icon closed folder iconTensor Relationships
  • folder icon closed folder iconDeep Lake Docs Home
  • folder icon closed folder iconQuickstart

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconQuickstart

Sentiment-140 Dataset

Estimated reading: 4 minutes

Sentiment-140 dataset

What is Sentiment-140 Dataset?

Sentiment-140 dataset has 800,000 tweets with positive emoticons, and 800,000 tweets with negative emoticons, for a total of 1,600,000 training tweets as well as a test set of 177 negative tweets and 182 positive tweets with only some data containing emoticons. This dataset is useful for consumers or companies to automatically classify the sentiment of their brands, product, or topic on Twitter as either positive or negative with respect to a query term. The dataset has only tweets in English.

Download Sentiment-140Dataset in Python

Instead of downloading the Sentiment-140 dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load Sentiment-140 Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/sentiment-140-train")
				
			

Load Sentiment-140 Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/sentiment-140-test")
				
			

Sentiment-140 Dataset Structure

Sentiment-140 Data Fields
For the test set:
  • sentiment_type: tensor containing the polarity of the tweet. 0 represents negative, 2 represents neutral and 4 represents a positive tweet.
  • tweet_text: the tensor containing the tweeted text.
  • user: the tensor containing the details of the user who tweeted the text.
  • id: tensor containing the id of the tweet.
  • date: tensor containing the date of the tweet.
  • topic: tensor containing the topic of the tweet.
For the test set:
  • sentiment_type: tensor containing the polarity of the tweet. 0 represents negative, 2 represents neutral and 4 represents a positive tweet.
  • tweet_text: the tensor containing the tweeted text.
  • user: the tensor containing the details of the user who tweeted the text.
  • query_flag: tensor containing query term, if there is no query, then the value will be NO_QUERY.
  • date: tensor containing the date of the tweet.
  • id: tensor containing the id of the tweet.
Sentiment-140 Data Splits
  • The Sentiment-140 dataset has 800,000 tweets with positive emoticons, and 800,000 tweets with negative emoticons, for a total of 1,600,000 training tweets.
  • The Sentiment-140 dataset test set was composed of 177 negative tweets and 182 positive tweets with only some data containing emoticons.

How to use Sentiment-140 Dataset with PyTorch and TensorFlow in Python

Train a model on Sentiment-140 dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on Sentiment-140 dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Sentiment-140 Dataset Creation

Data Collection and Normalization Information

The training data was post-processed. Emoticons are removed for training purposes. All tweets containing both positive and negative emotions are filtered out and removed. Retweets or tweets copied from another user have been removed. Tweets containing “:P” are removed. The retweet or repeated tweets are removed from the dataset. The test data was manually collected using web applications.

Additional Information about Sentiment-140 Dataset

Sentiment-140 Dataset Description

  • Homepage: http://help.sentiment140.com/home
  • Repository: N/A
  • Paper: Go, A., Bhayani, R., & Huang, L. (2009). Twitter sentiment classification using distant supervision. CS224N project report, Stanford, 1(12), 2009.
  • Point of Contact: http://help.sentiment140.com/contact
Sentiment-140 Dataset Curators

Alec Go, Richa Bhayani, and Lei Huang

Sentiment-140 Dataset Licensing Information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license. If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

Sentiment-140 Dataset Citation Information
				
					@article{go2009twitter,
  title={Twitter sentiment classification using distant supervision},
  author={Go, Alec and Bhayani, Richa and Huang, Lei},
  journal={CS224N project report, Stanford},
  volume={1},
  number={12},
  pages={2009},
  year={2009}
}
				
			
Datasets - Previous Lincolnbeet Dataset Next - Datasets MURA Dataset
Datasets - Previous Lincolnbeet Dataset Next - Datasets MURA Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop