Machine Learning Datasets Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 

Machine Learning Datasets

  • folder icon closed folder iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • folder icon closed folder iconShuffling in ds.pytorch()
  • folder icon closed folder iconStorage Synchronization
  • folder icon closed folder iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • folder icon closed folder iconTensor Relationships
  • folder icon closed folder iconDeep Lake Docs Home
  • folder icon closed folder iconQuickstart

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconQuickstart

Pascal VOC 2012 Dataset

Estimated reading: 6 minutes

Visualization of the Pascal VOC 2012 Dataset in the Deep Lake UI

Pascal VOC 2012 Dataset

What is Pascal VOC 2012 Dataset?

The purpose of the Pascal VOC 2012(PASCAL Visual Object Classes) dataset is to recognize objects in realistic scenarios from a variety of visual object types that are not pre-segmented objects and is basically used for the supervised learning task. The dataset can be used for different object recognition challenges such as classification, detection, segmentation, and person layout. There are a whole total of twenty object classes chosen. There are 11,530 images in the train/val data set, including 27,450 ROI-tagged objects and 6,929 segmentations.

Download Pascal VOC 2012 Dataset in Python

Instead of downloading the Pascal VOC 2012 dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load Pascal VOC 2012 Dataset Training and validation Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/pascal-voc-2012-train-val')
				
			

Load Pascal VOC 2012 Dataset Test Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/pascal-voc-2012-test')
				
			

Pascal VOC 2012 Dataset Structure

Pascal VOC 2012 Data Fields
For training and validation set
  • images: tensor containing images.
  • instances/instance__mask: tensor for object segmentation.
  • instances/mask_pixel: tensor containing pixel values of instances of objects.
  • actions/box: tensor containing bounding box coordinates for action categories.
  • actions/key point: tensor containing a single key point for action categories.
  • actions/pose: tensor specifying the pose of the object. Most of the pose categories are ‘unspecified’.
  • actions/label: tensor containing labels that represent action categories.
  • actions/difficult: tensor containing the label that represents if the object is difficult to annotate.
  • boxes/box: tensor that contains the coordinate values of the bounding boxes.
  • boxes/label: tensor that contains the labels of the bounding boxes.
  • boxes/pose: tensor containing the numerical label that represents the index of one of the 5 pose categories.
  • boxes/occlusion: tensor containing the numerical label that represents if the image is occluded or not occluded.
  • boxes/trunc: tensor containing the numerical label that represents if the image is truncated or not truncated.
  • boxes/difficult: tensor containing the numerical label that represents if the image is difficult or not difficult to annotate.
  • parts/box: tensor that contains the coordinates of the bounding boxes for body parts used for the person layout challenge.
  • parts/label: tensor that contains the labels of the bounding boxes for body parts used for person layout challenge.
  • semantics/mask: tensor that represents the class mask.
  • semantics/label: tensor that contains the labels of classes present in the image and two extra labels, ‘background’ representing the background of the objects and ‘None’ representing the border/outline of the object or objects difficult to label in the image.
  • metadata/action_train_val_split: tensor containing details of whether the image is in train or validation split and is used or not in action detection.
  • metadata/segmentation_train_val_split: tensor that contains the text that gives the details of whether the image is a train split tensor contains the text ‘train’. For images used for validation contains the text ‘validation’. If the image is not used for segmentation it contains the text ‘image not used in segmentation’.
  • metadata/part_train_val_split: tensor that contains the text that gives the details of whether the image is used for training or validation or not used in body part/person layout detection.
  • metadata/main_train_val_split: tensor that contains the text that gives the details of whether the image is used for training or validation or not used in the main set.
  • metadata/image_meta: tensor containing image metadata.
For test set
  • images: tensor containing the images.
  • boxes/box: tensor that contains the coordinate values of the bounding boxes.
  • boxes/label: tensor that contains the labels of the bounding boxes.
  • boxes/pose: tensor containing the numerical label that represents the index of one of the 5 pose categories.
  • boxes/difficult: tensor containing the numerical label that represents the index if the image is difficult to annotate.
  • parts/box: tensor that contains the coordinates of the bounding boxes for body parts used for the person layout challenge.
  • parts/label: tensor that contains the labels of the bounding boxes for body parts used for the person layout challenge.
  • actions/box: tensor containing bounding box coordinates for action categories.
  • actions/key point: tensor containing a single key point for action categories.
  • actions/pose: tensor specifying the pose of the object. Most of the pose categories are ‘unspecified’.
  • actions/label: tensor containing labels that represent action categories.
  • actions/difficult: tensor containing the label that represents if the object is difficult to annotate.
  • metadata/main_test_set: tensor representing the text that gives the details of whether the image is a test set used for object classification and detection.
  • metadata/part_test_set: tensor representing the text that gives the details of whether the image is a test set used for a person layout challenge.
  • metadata/segmentation_test_set: tensor representing the text that gives the details of whether the image is a test set used for class and object segmentation.
  • metadata/image_meta: tensor containing image metadata.
Pascal VOC 2012 Data Splits
  • The Pascal VOC 2012 training and validation dataset has 17125 labeled samples.
  • The Pascal VOC 2012 test dataset has 5138 samples.

How to use Pascal VOC 2012 Dataset with PyTorch and TensorFlow in Python

Train a model on Pascal VOC 2012 dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on Pascal VOC 2012 dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about Pascal VOC 2012 Dataset

Pascal VOC 2012 Dataset Description

  • Homepage: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
  • Paper: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/devkit_doc.pdf
Pascal VOC 2012 Dataset Curators
Mark Everingham, John Winn
Pascal VOC 2012 Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
 
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
Pascal VOC 2012 Dataset Citation Information
				
					@article{everingham2011pascal,
title={The pascal visual object classes challenge 2012 (voc2012) development kit},
author={Everingham, Mark and Winn, John},
journal={Pattern Analysis, Statistical Modelling and Computational Learning, Tech. Rep},
volume={8},
pages={5},
year={2011}
}
				
			
Datasets - Previous UTZappos50k Dataset Next - Datasets Pascal VOC 2007 Dataset
Datasets - Previous UTZappos50k Dataset Next - Datasets Pascal VOC 2007 Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop