Machine Learning Datasets Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 

Machine Learning Datasets

  • folder icon closed folder iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • folder icon closed folder iconShuffling in ds.pytorch()
  • folder icon closed folder iconStorage Synchronization
  • folder icon closed folder iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • folder icon closed folder iconTensor Relationships
  • folder icon closed folder iconDeep Lake Docs Home
  • folder icon closed folder iconQuickstart

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconQuickstart

LIAR Dataset

Estimated reading: 4 minutes

LIAR dataset

What is LIAR Dataset?

LIAR Dataset, is a new fake news detection dataset that includes 12.8 thousand short phrases labeled by hand for honesty, topic, context/place, speaker, status, party, and past date. The dataset contains short, decade-old statements in various contexts from politifact.com, which gives a complete analysis report and links to source documentation for each case. This dataset can make the development of fake news detection ML algorithms easier. The dataset can also be used for stance classification, argument mining, topic modeling, rumor detection, and political NLP research.

Download LIAR Dataset in Python

Instead of downloading the LIAR dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load LIAR Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/liar-train')
				
			

Load LIAR Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/liar-test')
				
			

Load LIAR Dataset Validation Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/liar-val')
				
			

LIAR Dataset Structure

LIAR Data Fields
  • id: tensor that contains id.
  • label: tensor that contains the labels true, false, half-true, pants-fire, barely-true, mostly-true.
  • statement: tensor that statements.
  • subject: tensor that contains topics of discussion.
  • speaker: tensor that contains the details of the speaker such as the name of the speaker.
  • job_title: tensor that contains the job title of the speaker.
  • state_info: tensor that contains the name of the state.
  • party_affiliation: tensor that contains details on party affiliation
  • barely_true_counts: tensor that contains the count for a barely true statement.
  • false_counts: tensor that contains the count for false statements.
  • half_true_counts: tensor that contains the count for half-true statements.
  • mostly_true_counts: tensor that contains the count for mostly true statements.
  • pants_onfire_counts: tensor that contains the count for pants on fire counts.
  • context: tensor that contains the context.
  •  
LIAR Data Splits
  • The LIAR dataset training set is composed of 10,269 statements.
  • The LIAR dataset test set is composed of 1283 statements.
  • The LIAR dataset validation set is composed of 1,284 statements.

How to use LIAR Dataset with PyTorch and TensorFlow in Python

Train a model on LIAR dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on LIAR dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

LIAR Dataset Creation

Data Collection and Normalization Information

The LIAR dataset contains short 12.8 thousand manually-labeled statements from API 5 of politifact.com, checked for their authenticity by the politifact.com editors. Repeated labels were found and merged. The six fine-grained labels for the truthfulness ratings are the following: pants-fire, false, barely true, half-true, mostly true, and true. A second-stage verification was required to balance the distribution of the pants-fire label. For this, the rate of agreement was measured with Cohen’s kappa to verify a randomly sampled subset of the analysis reports with the reporters’ analysis. Meta data such as party affiliations, current job, home state, and credit history is also included for each speaker in the LIAR dataset. The credit history consists of the historical counts of inaccurate statements for each speaker. Vast coverage of the topics is ensured by including a variety of subjects discussed by the speakers, as well as the top 10 most discussed subjects were also included.

Additional Information about LIAR Dataset

LIAR Dataset Description

  • Homepage: https://www.cs.ucsb.edu/~william/data/liar_dataset.zip
  • Repository: N/A
  • Paper: William Yang Wang:“Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News Detection
  • Point of Contact: william@cs.ucsb.edu
LIAR Dataset Curators

William Yang Wang

LIAR Dataset Licensing Information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license. If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

LIAR Dataset Citation Information
				
					@article{wang2017liar,
  title={" liar, liar pants on fire": A new benchmark dataset for fake news detection},
  author={Wang, William Yang},
  journal={arXiv preprint arXiv:1705.00648},
  year={2017}
}
				
			
Datasets - Previous MURA Dataset Next - Datasets Stanford Cars Dataset
Datasets - Previous MURA Dataset Next - Datasets Stanford Cars Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop