Machine Learning Datasets Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 

Machine Learning Datasets

  • folder icon closed folder iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • folder icon closed folder iconShuffling in ds.pytorch()
  • folder icon closed folder iconStorage Synchronization
  • folder icon closed folder iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • folder icon closed folder iconTensor Relationships
  • folder icon closed folder iconDeep Lake Docs Home
  • folder icon closed folder iconQuickstart

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconQuickstart

HAM10000 Dataset

Estimated reading: 4 minutes

Visualization of the HAM10000 dataset in the Deep Lake UI

HAM10000 dataset

What is HAM10000 Dataset?

The Human Against Machine with 10000 training images (HAM10000) dataset includes 10000 training images for detecting pigmented skin lesions. The images in the dataset were collected from different populations, acquired, and stored by different modalities. Cases included in the dataset include a representative collection of all important diagnostic categories in the realm of pigmented lesions. More than half of the lesions in the dataset are confirmed through histopathology, the ground truth for the rest of the cases is either follow-up examination, expert consensus, or confirmation by in-vivo confocal microscopy. The dataset includes lesions with multiple images.

Download HAM10000 Dataset in Python

Instead of downloading the HAM10000 dataset in Python, you can effortlessly load it in Python via our open-source package Deep Lake  with just one line of code.

Load HAM10000 Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/ham10000")
				
			

HAM10000 Dataset Structure

HAM10000 Data Fields
  • images: tensor containing the face image.
  • genders: tensor contains different genders.
  • lesion_categories: tensor to represent different lesion categories.
  • sources: tensor to represent the source.
  • localizations: tensor to represent the localisation of lesion.
  • ages: tensor representing age of person.
  • lesion_ids: tensor representing lesion id.
  • image_ids: tensor representing image id.
HAM10000 Data Splits
  • The HAM10000 dataset training set is composed of 10015 images.

How to use HAM10000 Dataset with PyTorch and TensorFlow in Python

Train a model on HAM10000 dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on HAM10000 dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about HAM10000 Dataset

HAM10000 Dataset Description

  • Homepage: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T
  • Repository: N/A
  • Paper: Tschandl, Philipp, 2018, “The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions”, https://doi.org/10.7910/DVN/DBW86T,
  • Point of Contact: N/A
HAM10000 Dataset Curators

Tschandl, Philipp

HAM10000 Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
 
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
HAM10000 Dataset Citation Information
				
					@inproceedings{,
  title = {The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions},
  author = {Tschandl, Philipp},
    year = {2018} 
}
				
			

HAM10000 Dataset FAQs

What is the HAM10000 dataset for Python?

The HAM10000 dataset is a popular benchmark dataset that can be used for machine learning and for comparing machine learning results with human experts. The cases included in the HAM10000 contain a representative collection of all important diagnostic categories in the realm of pigmented lesions.

How to download the HAM10000 dataset in Python?

You can load HAM10000 dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load HAM10000 dataset training subset in Python.

How can I use HAM10000 dataset in PyTorch or TensorFlow?

You can stream the HAM10000 dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on HAM10000 dataset with PyTorch in Python or train a model on HAM10000 dataset with TensorFlow in Python.

Datasets - Previous DomainNet Dataset Next - Datasets Tiny ImageNet Dataset
Datasets - Previous DomainNet Dataset Next - Datasets Tiny ImageNet Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop