Machine Learning Datasets Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 

Machine Learning Datasets

  • folder icon closed folder iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • folder icon closed folder iconShuffling in ds.pytorch()
  • folder icon closed folder iconStorage Synchronization
  • folder icon closed folder iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • folder icon closed folder iconTensor Relationships
  • folder icon closed folder iconDeep Lake Docs Home
  • folder icon closed folder iconQuickstart

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconQuickstart

FFHQ Dataset

Estimated reading: 4 minutes

Visualization of the FFHQ Dataset in the Deep Lake UI

FFHQ (Flickr-Faces-HQ) Dataset

What is FFHQ Dataset?

The FFHQ Dataset (Flickr-Faces-HQ) dataset is a high quality image set containing 70,000 PNG images at 1024×1024 resolution, its been put a considerable effort to include as many attributes as possible and variations on these, so expect a wide range of different age, and ethinicty.

Importantly, this dataset is not intended for, and should not be used for, development or improvement of facial recognition technologies.

Download FFHQ Dataset in Python

Instead of downloading the FFHQ dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code

Load FFHQ Dataset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/ffhq")
				
			

FFHQ Dataset Structure

FFHQ Data Fields
  • images_1024/face_landmarks: an int32 tensor containing 204 coco points
  • images_1024/image: a uint8 tensor containing a 1024 x 1024 png image
  • images_128/image: a uint8 tensor containing a 128 x 128 png image
  • images_metadata: an str tensor containing the 70,000 image metadata
  • images_wild/face_landmarks: a int32 tensor containing 204 coco points
  • images_wild/face_quad: a float32 tensor containing 4 generic objects
  • images_wild/face_rect: a int32 tensor containing 1 bbox object
  • images_wild/image: a uint8 tensor containing a 1062 x 1072 compressed png image
FFHQ Data Splits

While FFHQ dataset is not explicitly split between a training and validation set, it is customary to use the first 60,000 images as a training set and the remaining 10,000 for validation. You can achieve that in the following way:

				
					import deeplake
ds_train = deeplake.load("hub://activeloop/ffhq")[60000]
ds_val = deeplake.load("hub://activeloop/ffhq")[10000]
				
			

How to use FFHQ Dataset with PyTorch and TensorFlow in Python

Train a model on FFHQ dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on FFHQ dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

FFHQ Dataset Creation

Data collection and Normalization of images

These images were collected from Flickr under a permissive license, they were cropped and aligned using dlib and various filters were used to prune the set. Finally, Amazon Mechanical Turk was used to remove the occasional statues, paintings, or photos of photos.

Additional information about FFHQ Dataset

FFHQ Dataset Description

  • Homepage: N/A
  • Repository: https://github.com/NVlabs/ffhq-dataset
  • Paper: T. Karras, S. Laine and T. Aila, “A Style-Based Generator Architecture for Generative Adversarial Networks,” 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 4396-4405, doi: 10.1109/CVPR.2019.00453.
  • Point of Contact: researchinquiries@nvidia.com
FFHQ Dataset Curators

Terros Karras, Samuli Laine, Timo Aila

FFHQ Dataset Licensing information

Creative Commons Attribution-Share Alike 4.0 license

FFHQ Dataset Citation Information
				
					@article{,
  title={A Style-Based Generator Architecture for Generative Adversarial Networks},
  author={Tero Karras, Samuli Laine, Timo Aila},
  journal={IEEE[Online]. Avaliable: https://ieeexplore.ieee.org/document/8953766},
  volume={3},
  year={2019}
}
				
			

FFHQ Datasets FAQs

What is the FFHQ dataset for Python?

The FFHQ dataset(Flickr-Faces-HQ) is a popular high quality image dataset scraped from twitter. FFHQ dataset provides 70,000 PNG images of a wide range of people of different features, these images are provided with a resolution of 1024 x 1024.

What is the FFHQ dataset used for?

FFHQ is used as a means for the benchmarking of generative adversarial networks models, but the wide range of age and other features allows for multiple uses on this dataset such as face aging, face generation, and metric learning.

How to download the FFHQ dataset in Python?

You can load the FFHQ dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load the FFHQ dataset.

How can i use FFHQ dataset in Pytorch or TensorFlow?

You can stream the FFHQ dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on FFHQ dataset with Pytorch in Python or train a model on FFHQ dataset with TensorFlow in Python.

Deep Lake community member Leon Oswaldo has contributed to this documentation. You rock, Leon! 🙂

Datasets - Previous Places205 Dataset Next - Datasets CARPK Dataset
Datasets - Previous Places205 Dataset Next - Datasets CARPK Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop