Machine Learning Datasets Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 

Machine Learning Datasets

  • folder icon closed folder iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • folder icon closed folder iconShuffling in ds.pytorch()
  • folder icon closed folder iconStorage Synchronization
  • folder icon closed folder iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • folder icon closed folder iconTensor Relationships
  • folder icon closed folder iconDeep Lake Docs Home
  • folder icon closed folder iconQuickstart

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconQuickstart

DAISEE Dataset

Estimated reading: 4 minutes

DAISEE dataset

What is DAiSEE Dataset?

The DAiSEE dataset is the first multi-label video classification dataset. It is made up of 9068 video snippets captured from 112 users. The videos recognize the user’s state of boredom, confusion, engagement, and frustration. The dataset has four levels of labels (very low, low, high, and very high) for each of the affective states. The labels were crowd annotated and correlated with a gold standard annotation created using a team of expert psychologists.

Download DAiSEE Dataset in Python

Instead of downloading the DAiSEE dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load DAISEE Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/daisee-train")
				
			

Load DAISEE Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/daisee-test")
				
			

Load DAISEE Dataset Validation Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/daisee-validation")
				
			

DAISEE Dataset Structure

DAISEE Data Fields
  • video: tensor representing video file.
  • boredom: tensor to classify boredom from very low to very high.
  • engagement: tensor to classify engagement from very low to very high.
  • confusion: tensor to classify confusion from very low to very high.
  • frustration: tensor to classify frustration from very low to very high.
  • gender: tensor to classify based on the gender of the speaker.
EMNIST Data Splits
  • The DAISEE dataset training set is composed of 5482.
  • The DAISEE dataset validation set is composed of 1723
  • The DAISEE dataset testing set is composed of 1720

How to use DAISEE Dataset with PyTorch and TensorFlow in Python

Train a model on DAISEE dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on DAISEE dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about DAISEE Dataset

DAISEE Dataset Description

  • Homepage: https://people.iith.ac.in/vineethnb/resources/daisee/index.html
  • Repository: N/A
  • Paper: Introduced by Abhay Gupta, Arjun D’Cunha, Kamal Awasthi, Vineeth Balasubramanian in DAiSEE: Towards User Engagement Recognition in the Wild
  • Point of Contact: daisee-dataset@iith.ac.in
ADAISEE Dataset Curators

Abhay Gupta, Arjun D’Cunha, Kamal Awasthi, Vineeth Balasubramanian

DAISEE Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
 
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
DAISEE Dataset Citation Information
				
					@article{Gupta2016DAISEEDF,
  title={DAISEE: Dataset for Affective States in E-Learning Environments},
  author={Abhay Gupta and Richik Jaiswal and Sagar Adhikari and Vineeth N. Balasubramanian},
  journal={ArXiv},
  year={2016},
  volume={abs/1609.01885}
}
				
			

DAISEE Dataset FAQs

What is the DAISEE dataset for Python?

DAiSEE is a multi-label video classification dataset comprising 9,068 video clips from 112 people. It is a popular dataset for identifying various emotional states (boredom, confusion, engagement, and frustration) in real-life situations. The dataset was developed to provide a springboard for further research in the field of feature extraction and context-based inference.

How to download the DAISEE dataset in Python?

You can load DAISEE dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load DAISEE dataset training subset and testing subset in Python.

How can I use the DAISEE dataset in PyTorch or TensorFlow?

You can stream the DAISEE dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on DAISEE dataset with PyTorch in Python or train a model on DAISEE dataset with TensorFlow in Python

Datasets - Previous WISDOM Dataset Next - Datasets WIDER Dataset
Datasets - Previous WISDOM Dataset Next - Datasets WIDER Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop