Machine Learning Datasets Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 

Machine Learning Datasets

  • folder icon closed folder iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • folder icon closed folder iconShuffling in ds.pytorch()
  • folder icon closed folder iconStorage Synchronization
  • folder icon closed folder iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • folder icon closed folder iconTensor Relationships
  • folder icon closed folder iconDeep Lake Docs Home
  • folder icon closed folder iconQuickstart

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconQuickstart

CoQA Dataset

Estimated reading: 3 minutes

CoQA dataset

What is CoQA Dataset?

The CoQA (Conversational Question Answering) dataset is a large-scale dataset for developing conversational question-answering systems. CoQA has over 127,000 questions and answers from over 8000 discussions. The CoQA challenge aims to assess machines’ capacity to comprehend a written passage and respond to a series of interconnected questions that emerge during a conversation.

Download CoQA Dataset in Python

Instead of downloading the MNIST dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load CoQA Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/coqa-train")
				
			

Load CoQA Dataset Validation Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/coqa-val")
				
			

CoQA Dataset Structure

CoQA Data Fields
  • id : tensors containing id.
  • sources : tensors containing sources
  • filenames : tensor that contains filenames
  • stories : tensor that contain stories
  • questions : tensors containing questions
  • turnids : tensors containing turnids
  • ans_start : tensors containing starting index of answers
  • ans_end :tensor that contain ending index of answers
  • span_text answers: tensor that contain answers
CoQA Data Splits
  • The CoQA dataset training set is composed of 108647 samples.
  • The CoQA dataset val set is composed of 7983 samples.

How to use CoQA Dataset with PyTorch and TensorFlow in Python

Train a model on CoQA dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on CoQA dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

CoQA Dataset Creation

Additional Information about CoQA Dataset

CoQA Dataset Description

  • Homepage: https://stanfordnlp.github.io/coqa/
  • Paper: https://arxiv.org/pdf/1808.07042.pdf
  • Point of Contact: danqic@cs.princeton.edu or https://groups.google.com/forum/#!forum/coqa or siva.reddy@mila.quebec
CoQA Dataset Curators
Siva Reddy, Danqi Chen, Christopher D. Manning
CoQA Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
 
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
CoQA Dataset Citation Information
				
					@article{reddy2019coqa,
  title={Coqa: A conversational question answering challenge},
  author={Reddy, Siva and Chen, Danqi and Manning, Christopher D},
  journal={Transactions of the Association for Computational Linguistics},
  volume={7},
  pages={249--266},
  year={2019},
  publisher={MIT Press}
}
				
			

CoQA Dataset FAQs

What is CoQA dataset for Python?

CoQA has 127,000+ questions and answers from 8000+ discussions. Conversations are between two people and are in the form of questions and answers regarding a passage. The questions are conversational, the answers can be free-form text, and each answer includes an evidence subsequence marked in the passage and the passages from seven different domains.

What is the CoQA dataset used for?
The CoQA challenge aims to assess machines’ capacity to comprehend a written passage and respond to a series of interconnected questions that emerge during a conversation. This dataset is often used in the field of natural language processing.
 
How to use and download the CoQA dataset in Python?

Using the open-source package Activeloop Deep Lake the CoQA dataset can quickly be loaded with just one line of code. See detailed instructions on how to load the CoQA dataset training subset and how to load the validation subset in Python.

Datasets - Previous COCO-Text Dataset Next - Datasets FGNET Dataset
Datasets - Previous COCO-Text Dataset Next - Datasets FGNET Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop