Machine Learning Datasets Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 

Machine Learning Datasets

  • folder icon closed folder iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • folder icon closed folder iconShuffling in ds.pytorch()
  • folder icon closed folder iconStorage Synchronization
  • folder icon closed folder iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • folder icon closed folder iconTensor Relationships
  • folder icon closed folder iconDeep Lake Docs Home
  • folder icon closed folder iconQuickstart

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconQuickstart

AQUA Dataset

Estimated reading: 4 minutes

Visualization of the AQUA  dataset in the Deep Lake UI

AQUA dataset

What is AQUA Dataset?

In the AQUA (Algebra Question Answering with Rationales) Dataset, question-and-answer (QA) pairs are constructed automatically utilizing cutting-edge question-generating methods based on paintings and comments from an existing art knowledge dataset. Crowdsourcing workers clean the QA pairs in terms of grammatical accuracy, answerability, and correctness of answers. Visual (painting-based) and knowledge (comment-based) questions are intrinsically included in the dataset.

Download AQUA Dataset in Python

Instead of downloading the AQUA dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load AQUA Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/aqua-train")
				
			

Load AQUA Dataset Valiadation Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/aqua-val")
				
			

Load AQUA Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/aqua-test")
				
			

AQUA Dataset Structure

AQUA Data Fields
  • image: tensor containing the face image.
  • need_external_knowledge: a binary tensor of True/False
  • questions: a text tensor containing questions related to image.
  • answers: a text tensor containing answers related to the question asked.
AQUA Data Splits
  • The AQUA dataset training set is composed of 17117.
  • The AQUA dataset testing set is composed of 1032.
  • The AQUA dataset validation set is composed of 1040.

How to use AQUA Dataset with PyTorch and TensorFlow in Python

Train a model on AQUA dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on AQUA dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about AQUA Dataset

AQUA Dataset Description

  • Homepage: N/A
  • Repository: https://github.com/noagarcia/ArtVQA
  • Paper: Noa Garcia and Chentao Ye and Zihua Liu and Qingtao Hu and Mayu Otani and Chenhui Chu and Yuta Nakashima and Teruko Mitamura in “A Dataset and Baselines for Visual Question Answering on Art”
  • Point of Contact: N/A
AQUA Dataset Curators

Noa Garcia and Chentao Ye and Zihua Liu and Qingtao Hu and Mayu Otani and Chenhui Chu and Yuta Nakashima and Teruko Mitamura

AQUA Dataset Licensing Information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.

If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

AQUA Dataset Citation Information
				
					@InProceedings{garcia2020AQUA,
   author    = {Noa Garcia and Chentao Ye and Zihua Liu and Qingtao Hu and 
                Mayu Otani and Chenhui Chu and Yuta Nakashima and Teruko Mitamura},
   title     = {A Dataset and Baselines for Visual Question Answering on Art},
   booktitle = {Proceedings of the European Conference in Computer Vision Workshops},
   year      = {2020},
}
				
			

AQUA Dataset FAQs

What is the AQUA dataset for Python?

In AQUA Dataset, question-and-answer (QA) pairs are constructed automatically utilizing cutting-edge question-generating methods based on paintings and comments from an existing art knowledge dataset. Crowdsourcing workers clean the QA pairs in terms of grammatical accuracy, answerability, and correctness of answers. Visual (painting-based) and knowledge (comment-based) questions are intrinsically included in the dataset.

How to download the AQUA dataset in Python?

You can load AQUA dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load AQUA dataset training subset or AQUA data testing subset in Python.

How can I use AQUA dataset in PyTorch or TensorFlow?

You can stream AQUA dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on AQUA dataset with PyTorch in Python or train a model on AQUA dataset with TensorFlow in Python.

Datasets - Previous LOL Dataset Next - Datasets LFPW Dataset
Datasets - Previous LOL Dataset Next - Datasets LFPW Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop