Machine Learning Datasets Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 

Machine Learning Datasets

  • folder icon closed folder iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • folder icon closed folder iconShuffling in ds.pytorch()
  • folder icon closed folder iconStorage Synchronization
  • folder icon closed folder iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • folder icon closed folder iconTensor Relationships
  • folder icon closed folder iconDeep Lake Docs Home
  • folder icon closed folder iconQuickstart

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconQuickstart

Office-Home Dataset

Estimated reading: 4 minutes

Visualization of the office-home dataset in the Deep Lake UI

Office-Home Dataset

What is Office-Home Dataset?

The Office-Home dataset was created to assess deep learning algorithms for domain adaptation-based object recognition. The dataset consists of images from 4 different domains which include art, clip art, product, and Real-World images. The dataset contains images of 65 types of objects commonly found in Office-Home Settings.

Download Office-Home Dataset in Python

Instead of downloading the Office-Home Dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load Office-Home Dataset in Python

import deeplake
ds = deeplake.load('hub://activeloop/office-home-domain-adaptation')

Office-Home Dataset Structure

Office-Home Data Fields
  • images: tensor containing images
  • domain_objects: labels that represent 65 categories of objects in each domain
  • domain_categories: labels that represent 4 domain categories

How to use Office-Home Dataset with PyTorch and TensorFlow in Python

Train a model on Office-Home Dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

dataloader = ds.pytorch(num_workers = 0, batch_size= 4, shuffle = False)
Train a model on Office-Home Dataset with TensorFlow in Python
dataloader = ds.tensorflow()

Office-Home Dataset Creation

Data Collection and Normalization Information
Python crawler was used for image collection. There were 100,000 images of 120 different objects. To make sure that the right objects are present in the image, the dataset was cleaned. It was also ensured that each category has a certain number of images. The last version of the dataset has 15,500 images of 65 different objects.

Additional Information about Office-Home Dataset

Office-Home Dataset Description

  • Homepage: https://www.hemanthdv.org/officeHomeDataset.html
  • Repository: N/A
  • Paper: https://openaccess.thecvf.com/content_cvpr_2017/papers/Venkateswara_Deep_Hashing_
    Network_CVPR_2017_paper.pdf
  • Point of Contact: N/A
Office-Home Dataset Curators
Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty and Sethuraman Panchanathan
 
Office-Home Dataset Licensing Information
More information about the license can be found here. Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license. If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
Office-Home Dataset Citation Information
@inproceedings{venkateswara2017deep,
title={Deep hashing network for unsupervised domain adaptation},
author={Venkateswara, Hemanth and Eusebio, Jose and Chakraborty, Shayok and Panchanathan, Sethuraman},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={5018--5027},
year={2017} }

Office-Home Dataset FAQs

What is the Office-Home dataset for Python?

The Office-Home dataset was developed to assess domain adaptation algorithms for object recognition using deep learning. The dataset is made up of images from four different domains—artistic, product, real-world images, and clip art. A Python web crawler that crawled through several search engines and online image directories was used to collect the images in the dataset.

What is the Office-Home dataset used for?

The Office-Home dataset is used as a benchmark dataset for domain adaptation. It contains four domains and each domain consists of 65 categories. The four domains include art (a collection of artistic images in the form of sketches), clipart (a collection of clipart images), product (a domain containing images of objects without a background), and real-world images (a domain containing images of objects captured with a regular camera).

How to download the Office-Home dataset in Python?

With the open-source package Activeloop Deep Lake in Python you can load the Office-Home dataset fast with one line of code. See detailed instructions on how to load the Office-Home dataset in Python.

How can I use Office-Home dataset in PyTorch or TensorFlow?

Using the open-source package Activeloop Deep Lake in Python you can stream the Office-Home dataset while training a model in PyTorch or TensorFlow with one line of code. See detailed instructions on how to train a model on Office-Home dataset with PyTorch in Python or train a model on Office-Home dataset with TensorFlow in Python.

Datasets - Previous LFW Funneled Dataset Next - Datasets LFW Dataset
Datasets - Previous LFW Funneled Dataset Next - Datasets LFW Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop