Machine Learning Datasets Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub 
  • Slack 
  • Documentation 

Machine Learning Datasets

  • folder icon closed folder iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • folder icon closed folder iconShuffling in ds.pytorch()
  • folder icon closed folder iconStorage Synchronization
  • folder icon closed folder iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • folder icon closed folder iconTensor Relationships
  • folder icon closed folder iconDeep Lake Docs Home
  • folder icon closed folder iconQuickstart

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDataset Visualization
  • Storage & Credentials
  • API Basics
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconHow to Contribute
  • Datasets
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • The Street View House Numbers (SVHN) Dataset
    • NABirds Dataset
    • GTZAN Music Speech Dataset
    • Places205 Dataset
    • FFHQ Dataset
    • CARPK Dataset
    • SQuAD Dataset
    • CACD Dataset
    • ICDAR 2013 Dataset
    • RAVDESS Dataset
    • Flickr30k Dataset
    • dSprites Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • PUCPR Dataset
    • KMNIST
    • EMNIST Dataset
    • GTSRB Dataset
    • Free Spoken Digit Dataset (FSDD)
    • USPS Dataset
    • CSSD Dataset
    • MARS Dataset
    • ATIS Dataset
    • HICO Classification Dataset
    • COCO-Text Dataset
    • NSynth Dataset
    • not-MNIST Dataset
    • CoQA Dataset
    • RESIDE dataset
    • ECSSD Dataset
    • FGNET Dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • ESC-50 Dataset
    • HASYv2 Dataset
    • Pascal VOC 2012 Dataset
    • PACS Dataset
    • GlaS Dataset
    • QuAC Dataset
    • TIMIT Dataset
    • WFLW Dataset
    • LFW Deep Funneled Dataset
    • UTZappos50k Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • KTH Actions Dataset
    • LFW Funneled Dataset
    • WIDER Face Dataset
    • LFW Dataset
    • Pascal VOC 2007 Dataset
    • Chest X-Ray Image Dataset
    • PlantVillage Dataset
    • Office-Home Dataset
    • WISDOM Dataset
    • Omniglot Dataset
    • DAISEE Dataset
    • HMDB51 Dataset
    • Optical Handwritten Digits Dataset
    • Fashionpedia Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • WIDER Dataset
    • Caltech 101 Dataset
    • DRIVE Dataset
    • PPM-100 Dataset
    • FER2013 Dataset
    • LSP Dataset
    • Adience Dataset
    • NIH Chest X-ray Dataset
    • UCF Sports Action Dataset
    • CelebA Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • MNIST
    • COCO Dataset
    • Kaggle Cats & Dogs Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • Image Hotspots Widget
    • ImageNet Dataset
    • CIFAR 10 Dataset
    • Lincolnbeet Dataset
    • CIFAR 100 Dataset
    • LIAR Dataset
    • OPA Dataset
    • Fashion MNIST Dataset
    • Sentiment-140 Dataset
    • Google Objectron Dataset
    • Stanford Cars Dataset
    • DomainNet Dataset
    • MURA Dataset
    • SWAG Dataset
    • HAM10000 Dataset
    • GTZAN Genre Dataset
    • Tiny ImageNet Dataset
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconQuickstart

DomainNet Dataset

Estimated reading: 5 minutes

Visualization of the Domainnet Clipart Train dataset in the Deep Lake UI

DomainNet dataset

What is DomainNet Dataset?

The DomainNet dataset comprises common objects in six different domains. There are 345 classes of objects in all sectors of DomainNet. Bracelets, aircraft, birds, and cellos are among the 345 objects within the dataset. A more detailed breakdown of the six different domains is presented below.

Different DomainNet Datasets

  • DomainNet Clipart: a clipart image collection
  • DomainNet Real: photography and real-world imagery
  • DomainNet Infograph: infographics with specific objects
  • DomainNet Sketch: sketches of specific things
  • DomainNet Paint: creative renderings of objects in the form of paintings
  • DomainNet Quickdraw: drawings by participants from across the world of the game “Quick Draw!”

Download DomainNet Datasets in Python

Instead of downloading the OPA dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load DomainNet CLIPART Dataset Training Subset in Python

import deeplake
ds = deeplake.load("hub://activeloop/domainnet-clip-train")

Load DomainNet CLIPART Dataset Testing Subset in Python

import deeplake
ds = deeplake.load("hub://activeloop/domainnet-clip-test")

Load DomainNet INFOGRAPH Dataset Training Subset in Python

import deeplake
ds = deeplake.load("hub://activeloop/domainnet-info-train")

Load DomainNet INFOGRAPH Dataset Testing Subset in Python

import deeplake
ds = deeplake.load("hub://activeloop/domainnet-info-test")

Load DomainNet REAL Dataset Training Subset in Python

import deeplake
ds = deeplake.load("hub://activeloop/domainnet-real-train")

Load DomainNet REAL Dataset Testing Subset in Python

import deeplake
ds = deeplake.load("hub://activeloop/domainnet-real-test")

Load DomainNet PAINT Dataset Training Subset in Python

import deeplake
ds = deeplake.load("hub://activeloop/domainnet-paint-train")

Load DomainNet PAINT Dataset Testing Subset in Python

import deeplake
ds = deeplake.load("hub://activeloop/domainnet-paint-test")

Load DomainNet SKETCH Dataset Training Subset in Python

import deeplake
ds = deeplake.load("hub://activeloop/domainnet-sketch-train")

Load DomainNet SKETCH Dataset Training Subset in Python

import deeplake
ds = deeplake.load("hub://activeloop/domainnet-sketch-test")

Load DomainNet QUICKDRAW Dataset Training Subset in Python

import deeplake
ds = deeplake.load("hub://activeloop/domainnet-quick-train")

Load DomainNet QUICKDRAW Dataset Testing Subset in Python

import deeplake
ds = deeplake.load("hub://activeloop/domainnet-quick-test")

DomainNet Dataset Structure

DomainNet Data Fields
  • images: tensor containing the face image.
  • labels: tensor to identify the type of object.
DRD Data SplitsDomainNet Data Splits
  • The DomainNet clipart dataset training set is composed of 33525 images.
  • The DomainNet clipart dataset testing set is composed of 15308 images.
  • The DomainNet real dataset training set is composed of 120906 images.
  • The DomainNet real dataset testing set is composed of 54421 images.
  • The DomainNet infograph dataset training set is composed of 36023 images.
  • The DomainNet infograph dataset testing set is composed of 17178 images.
  • The DomainNet paint dataset training set is composed of 50416 images.
  • The DomainNet paint dataset testing set is composed of 25343 images.
  • The DomainNet sketch dataset training set is composed of 48212 images.
  • The DomainNet sketch dataset testing set is composed of 22174 images.

How to use DomainNet Dataset with PyTorch and TensorFlow in Python

Train a model on DomainNet dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
Train a model on DomainNet dataset with TensorFlow in Python
dataloader = ds.tensorflow()

Additional Information about DomainNet Dataset

DomainNet Dataset Description

  • Homepage: http://ai.bu.edu/M3SDA/
  • Paper: Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, Bo Wang Our paper is accepted by ICCV 2019 as an Oral Presentation!
  • Point of Contact: N/A
DomainNet Dataset Curators

Peng, Xingchao and Bai, Qinxun and Xia, Xide and Huang, Zijun and Saenko, Kate and Wang, Bo

DomainNet Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
DomainNet Dataset Citation Information
@inproceedings{peng2019moment,
  title={Moment matching for multi-source domain adaptation},
  author={Peng, Xingchao and Bai, Qinxun and Xia, Xide and Huang, Zijun and Saenko, Kate and Wang, Bo},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={1406--1415},
  year={2019}
}

DomainNet Dataset FAQs

What is the DomainNet dataset for Python?

The DomainNet was collected and annotated by the largest UDA dataset with six distinct domains and approximately 0.6 million images distributed among 345 categories. DomainNet was created to address the gap in data availability for multi-source UDA research.

How to download the DomainNet dataset in Python?

You can load DomainNet dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load DomainNet dataset training subset and testing subset in Python.

How can I use the DomainNet dataset in PyTorch or TensorFlow?

You can stream DomainNet dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on DomainNet dataset with PyTorch in Python or train a model on Domainnet dataset with TensorFlow in Python.

Datasets - Previous OPA Dataset Next - Datasets HAM10000 Dataset
Datasets - Previous OPA Dataset Next - Datasets HAM10000 Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop