DomainNet Dataset

Visualization of the Domainnet Clipart Train dataset in the Deep Lake UI
The DomainNet dataset comprises common objects in six different domains. There are 345 classes of objects in all sectors of DomainNet. Bracelets, aircraft, birds, and cellos are among the 345 objects within the dataset. A more detailed breakdown of the six different domains is presented below.
- DomainNet Clipart: a clipart image collection
- DomainNet Real: photography and real-world imagery
- DomainNet Infograph: infographics with specific objects
- DomainNet Sketch: sketches of specific things
- DomainNet Paint: creative renderings of objects in the form of paintings
- DomainNet Quickdraw: drawings by participants from across the world of the game “Quick Draw!”
Instead of downloading the OPA dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.
import deeplake
ds = deeplake.load("hub://activeloop/domainnet-clip-train")
import deeplake
ds = deeplake.load("hub://activeloop/domainnet-clip-test")
import deeplake
ds = deeplake.load("hub://activeloop/domainnet-info-train")
import deeplake
ds = deeplake.load("hub://activeloop/domainnet-info-test")
import deeplake
ds = deeplake.load("hub://activeloop/domainnet-real-train")
import deeplake
ds = deeplake.load("hub://activeloop/domainnet-real-test")
import deeplake
ds = deeplake.load("hub://activeloop/domainnet-paint-train")
import deeplake
ds = deeplake.load("hub://activeloop/domainnet-paint-test")
import deeplake
ds = deeplake.load("hub://activeloop/domainnet-sketch-train")
import deeplake
ds = deeplake.load("hub://activeloop/domainnet-sketch-test")
import deeplake
ds = deeplake.load("hub://activeloop/domainnet-quick-train")
import deeplake
ds = deeplake.load("hub://activeloop/domainnet-quick-test")
DomainNet Data Fields
- images: tensor containing the face image.
- labels: tensor to identify the type of object.
DRD Data SplitsDomainNet Data Splits
Train a model on DomainNet dataset with PyTorch in Python
Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:
dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
Train a model on DomainNet dataset with TensorFlow in Python
dataloader = ds.tensorflow()
- Homepage: http://ai.bu.edu/M3SDA/
- Paper: Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, Bo Wang Our paper is accepted by ICCV 2019 as an Oral Presentation!
- Point of Contact: N/A
DomainNet Dataset Curators
Peng, Xingchao and Bai, Qinxun and Xia, Xide and Huang, Zijun and Saenko, Kate and Wang, Bo
DomainNet Dataset Licensing Information
DomainNet Dataset Citation Information
@inproceedings{peng2019moment,
title={Moment matching for multi-source domain adaptation},
author={Peng, Xingchao and Bai, Qinxun and Xia, Xide and Huang, Zijun and Saenko, Kate and Wang, Bo},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={1406--1415},
year={2019}
}
What is the DomainNet dataset for Python?
The DomainNet was collected and annotated by the largest UDA dataset with six distinct domains and approximately 0.6 million images distributed among 345 categories. DomainNet was created to address the gap in data availability for multi-source UDA research.
How to download the DomainNet dataset in Python?
You can load DomainNet dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load DomainNet dataset training subset and testing subset in Python.
How can I use the DomainNet dataset in PyTorch or TensorFlow?
You can stream DomainNet dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on DomainNet dataset with PyTorch in Python or train a model on Domainnet dataset with TensorFlow in Python.